
LETTER

An unbiased probability estimator to determine Weibull modulus
by the linear regression method

Murat Tiryakioğlu
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Weibull statistics is widely used to model the variability in

the fracture properties of ceramics as well as metals. The

probability, P, that a metallic part will fracture at a given

stress or strain, x, or below can be predicted as [1]

P ¼ 1� exp � x
x0

� �m� �
ð1Þ

where x0 is the scale parameter and m is the Weibull

modulus, alternatively referred to as the shape parameter.

There are several methods available in the literature to

calculate the Weibull modulus: linear regression (least

square), weighted least square, maximum likelihood

method and method of moments. The most popular method

is linear regression mainly because of its simplicity; taking

the logarithm of Eq. (1) twice yields a linear equation

ln ln
1

1� P

� �� �
¼ m lnðxÞ � m lnðx0Þ ð2Þ

with a slope of m and an intercept of )mln(x0). To estimate

m by using Eq. (2), probabilities have to be assigned to all

experimental data. Since true probabilities are unknown, P

has to be estimated. Several studies [2–4] have been con-

ducted to determine which probability estimator performs

better. All probability estimators were found to give biased

results, i.e., the average of the estimated m values is not the

same as true m (mtrue). For sample sizes (n) above 20, the

probability estimator with the least bias is:

P ¼ i� 0:5

n
ð3Þ

where i is the rank of each data point.

To characterize the bias of Weibull moduli estimated by

using Eq. (3), Monte-Carlo simulations were used to gen-

erate n data from a Weibull distribution with parameters

x0 = 1 and mtrue = 10. For one observation, n random

numbers between 0 and 1 were generated to obtain a set of

x values, all assigned a rank, which was then used to cal-

culate probabilities using Eq. (3). Equation (2) was used to

estimate the Weibull modulus. The sample size was

changed systematically between 5 and 50. For each sample

size, the experiment was repeated 20,000 times. Estimated

Weibull moduli were normalized by dividing them by mtrue

and their average (M) was calculated for each n and

probability estimator. Results are presented in Fig. 1 which

shows that Eq. (3) consistently overestimates the Weibull

modulus. The magnitude of bias, i.e., the difference

between M values and the M = 1 dashed-line, decreases on

n and is almost 0 when n = 50. Note that results of

Langlois [2] agree very well with those obtained in this

study.

In several studies [2, 4, 5], coefficient of variation was

used as a measure of the precision of estimated Weibull

moduli. The smaller the coefficient of variation, the higher

the precision of estimates. However, this approach may be

misleading; increases in both the average (bias) and stan-

dard deviation (rm) may be hidden by a decreased coeffi-

cient of variation. Several other researchers [3, 6]

recommended the use of correction factors to eliminate

bias. However, Peterlik [7] showed that each data set gives

statistically correct Weibull modulus estimates. The bias

arises from adding the results of repeated simulations.

Therefore, when there is only one set of data, one should
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refrain from using correction factors. Recently, Song et al.

[8] demonstrated that better estimates of the Weibull

modulus can be made when the probability estimator is

written in the form:

P ¼ i� a
nþ b

ð4Þ

where a and b are empirical values that change with n.

Song et al. used the fraction of the distribution of m/mtrue

that lies between 0.9 and 1.1 (f) as the criterion to judge,

instead of the coefficient of variation. They ran 10,000

simulations for each sample size and provided a and b
values for only 5 sample sizes ranging from 10 to 50. Their

results show an increase in f with n, but the averages of

resultant distributions were not reported.

In this study, the primary aim is to provide a probability

estimator that is unbiased for all sample sizes investigated.

To accomplish this task, only a was changed while b was

kept constant at 0, following Eq. (3). For each n, an iter-

ative procedure was employed to calculate the value of a
that yielded unbiased results as follows. Using the M and

rm for each n, confidence intervals for true mean of the m/

mtrue distribution (lM) were calculated as

M � z
rmffiffiffiffiffiffi
nm
p � lM � M þ z

rmffiffiffiffiffiffi
nm
p ð5Þ

where z is 1.95996 for 95% confidence. The value of a was

varied until lM = 1 was within the confidence intervals.

Experiments were repeated for 50,000 times (=nm) for each

n.

Results are presented in Table 1, in which a, average,

standard deviation and 95% confidence intervals and the

fraction of the distribution for 0.9 £ m/mtrue £ 1.1 (f) are
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Fig. 2 The change in a with sample size

Table 1 Values of a for sample

sizes between 9 and 50 along

with statistics calculated

n a M rm 95% confidence limits f

Upper Lower

9 0.130 1.0025 0.3574 1.0056 0.9994 0.2365

10 0.210 0.9994 0.3358 1.0023 0.9965 0.2490

11 0.260 1.0005 0.3153 1.0032 0.9977 0.2631

12 0.300 1.0003 0.3007 1.0029 0.9976 0.2709

13 0.332 1.0012 0.2889 1.0037 0.9986 0.2860

14 0.355 1.0003 0.2764 1.0027 0.9979 0.2956

15 0.368 1.0010 0.2645 1.0033 0.9986 0.3097

16 0.380 1.0014 0.2558 1.0037 0.9992 0.3195

17 0.390 0.9990 0.2470 1.0012 0.9969 0.3273

18 0.400 1.0008 0.2399 1.0029 0.9986 0.3357

19 0.410 1.0008 0.2331 1.0028 0.9987 0.3426

20 0.418 1.0006 0.2277 1.0026 0.9986 0.3494

22 0.430 1.0007 0.2174 1.0026 0.9988 0.3675

25 0.443 1.0006 0.2051 1.0024 0.9988 0.3810

27 0.448 0.9997 0.1961 1.0014 0.9980 0.3999

30 0.455 1.0000 0.1858 1.0017 0.9984 0.4183

32 0.460 1.0001 0.1813 1.0016 0.9985 0.4276

35 0.465 1.0002 0.1735 1.0017 0.9987 0.4441

40 0.472 0.9998 0.1623 1.0013 0.9984 0.4724

45 0.481 1.0001 0.1530 1.0014 0.9987 0.4931

50 0.486 0.9999 0.1459 1.0012 0.9986 0.5168
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Fig. 1 The effect of n on M as found in this study and by Langlois [2]
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listed for sample sizes between 9 and 50. The function did

not yield unbiased estimates for n < 9. The values of a
versus sample size in Table 1 are plotted in Fig. 2. Note

that a increases sharply at low sample sizes and would be a

negative value for n = 8. In Table 1, rm decreases and f

increases with n, as expected. rm values in Table 1 almost

match with the ones reported by Langlois and those pro-

duced in this study for Eq. (3). Hence a seems to affect

only the average but not the standard deviation of m/mtrue.

For comparison, simulations were run using a and b
values reported by Song et al. for the five sample sizes they

studied. For each sample size, 50,000 groups of data were

generated. The results are presented in Table 2. Note that

for all sample size with the exception of 50, a and b values

of Song et al. yield biased estimates, as evidenced by the

value of 1 being not included within the confidence limits.

For n = 10, their findings are more biased than those for

Eq. (3) (M = 1.0592 for this study in Fig. 1). The f results

in Table 2 are slightly lower than those reported by Song

et al., which may be due to more accurate prediction of

distribution percentiles in this study because of higher

number of replications.

When we compare standard deviations in Tables 1 and

2, the ones in Table 2 are only slightly less than those in

Table 1 with the exception of n = 10. Since a seems to

affect only the average, the slightly lower standard devia-

tions are probably a result of b not being held at zero,

although the effect of b seems to be very small. For n = 10,

it seems possible to obtain a and b values that yield higher f

values than those reported by Song et al.

The f values in Table 2 are higher for respective sample

sizes in Table 1. This is due to the positive bias and/or lower

standard deviation reported in Table 2. The distribution of

m/mtrue is positively skewed [4] and therefore increasing the

average (bias) results in a higher fraction of the distribution

to be within 0.9 and 1.1. When estimates have no bias

(n = 50) or slightly negative bias (n = 40), f values in

Tables 1 and 2 are almost identical, with slight differences

as a result of lower standard deviations in Table 2.

In conclusion, a probability estimator that yields

unbiased estimates of the Weibull modulus for sample

sizes between 9 and 50 is provided. This estimator per-

forms just as well as if not better than those reported in

the literature.
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Table 2 Results of

simulations using a and b
values reported by Song et al

n a b M rm 95% confidence limits f

Upper Lower

10 0.68 0.82 1.0859 0.3506 1.0890 1.0829 0.2628

20 0.62 1.00 1.0129 0.2251 1.0149 1.0109 0.3619

30 0.66 0.99 1.0139 0.1835 1.0155 1.0123 0.4282

40 0.59 0.92 0.9981 0.1589 0.9995 0.9967 0.4785

50 0.68 1.00 1.0113 0.1444 1.0126 0.9967 0.5191
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